

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

Document Information
Contract Number 610402

Project Website www.montblanc-project.eu

Contractual Deadline PM24

Dissemination Level PU

Nature O

Author Marc Schlütter (JUELICH)

Contributors Markus Geimer, Ilya Zhukov (JUELICH)

Reviewer Harald Servat (BSC), Brice Videau (CNRS)

Keywords Performance Analysis, Profiling, Tracing

Notices:
The research leading to these results has received funding from the European Community's Seventh Framework
Programme [FP7/2007-2013] under grant agreement n° 610402.

â Mont-Blanc 2 Consortium Partners. All rights reserved.

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 2

Change Log

Version Description of Change

V0.1 Initial draft

V0.2 Full version (to Mont-Blanc reviewers)

V1.0 Incorporated feedback from H. Servat & B. Videau

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 3

Table of Contents

Executive Summary ..4

 Introduction ..5 1

 Software components ..5 2

2.1 Score-P instrumentation and measurement system ..5
2.2 Scalasca Tracing Tools ..6

 Integrated hybrid analysis ..8 3

3.1 Generic support for task-based programming models ...8
3.1.1 Score-P measurement and profiling ...9
3.1.2 Scalasca trace analysis ...9

3.2 Integrated result presentation of hybrid asynchronous applications ... 10
3.2.1 Analysis report post-processing .. 10
3.2.2 Call tree visualization ... 12

3.3 Support for additional programming models ... 13
3.3.1 OpenCL .. 13
3.3.2 OmpSs ... 14
3.3.3 Programming model support developed outside of Mont-Blanc ... 17

 Conclusion and future work ... 19 4

Acronyms and Abbreviations .. 20

References ... 21

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 4

Executive Summary

To make effective use of current high-performance computing (HPC) architectures, developers
of scientific simulation codes often have to use multiple parallel programming models in
combination. To assist application developers in optimizing such hybrid codes, it is important to
provide them with powerful performance analysis tools that are capable of dealing with multiple
parallel programming models concurrently.

In this deliverable, we describe our modifications and enhancements to the Score-P
instrumentation and measurement infrastructure as well as the Scalasca Tracing Tools
package implemented within the Mont-Blanc project towards an integrated analysis of hybrid
applications using multiple parallel programming models in combination. In particular, we focus
on the support for the OmpSs and OpenCL programming models as well as the challenges
introduced by the asynchronous nature of create/wait-type threading and task-based
programming. Various examples highlight that Score-P and Scalasca now effectively support
the performance analysis of hybrid codes using a single, coherent workflow and a unified result
presentation.

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 5

 Introduction 1

To make effective use of current high-performance computing (HPC) architectures, developers
of scientific simulation codes often have to use multiple parallel programming models in
combination. For example, simulation codes may use the Message Passing Interface (MPI) for
inter-node communication, OpenMP for parallelizing work across multiple cores within a node,
and CUDA or OpenCL to leverage accelerators like GPGPUs or Intel Xeon Phi many-core co-
processors attached to the node. To assist application developers in optimizing such hybrid
codes, it is important to provide them with performance analysis tools that are capable of
dealing with multiple parallel programming models concurrently.

In this deliverable, we describe the work done to accomplish this goal in the Score-P
instrumentation and measurement system as well as the Scalasca trace analysis package. The
document is structured as follows: Section 2 provides a brief overview of the Score-P and
Scalasca packages. Next, Section 3 describes our modifications and enhancements in both
components towards an integrated analysis. Finally, Section 4 concludes the deliverable and
outlines future work.

 Software components 2

This section provides a brief overview of the two software components that have been modified
in the context of this deliverable and how they interact with each other. First, the Score-P
instrumentation and measurement system is described, followed by an overview of the
Scalasca Tracing Tools package.

2.1 Score-P instrumentation and measurement system

Score-P is a portable and highly scalable instrumentation and performance measurement
infrastructure jointly developed by a consortium of partners from Germany and the US under a
3-clause BSD open-source license. It supports profile and detailed event trace generation as
well as an online interface for accessing profile data at runtime. Due to the common data
formats CUBE4 for profiles and the Open Trace Format 2 (OTF2) for event traces, Score-P
supports a number of analysis tools with complementary functionality. Currently, Score-P works
with the Periscope Tuning Framework (TU Munich), Scalasca & Cube (jointly developed by
Jülich Supercomputing Centre, GRS Aachen, and TU Darmstadt), Vampir (TU Dresden), and
TAU (University of Oregon).

Figure 1 shows an overview of the Score-P architecture. Before performance data can be
collected, the target application needs to be instrumented and linked to the Score-P
measurement libraries, that is, extra code is inserted into the application’s code to intercept
relevant events at runtime. This process can be accomplished in various ways, for example, by

¶ source-code annotations manually inserted by the user,

¶ leveraging automatic instrumentation functionality provided by the compiler,

¶ source-to-source pre-processing,

¶ linking to pre-instrumented libraries,

¶ function wrapping through symbol renaming at link time, or

¶ registering call-back functions with a particular runtime system.

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 6

Figure 1: Overview of the Score-P instrumentation and measurement system architecture

and the interfaces to the supported analysis tools.

For each type of instrumentation, Score-P implements a corresponding instrumentation
wrapper ― a so-called adapter ― which maps the specific instrumentation events onto more
generic event handling functions provided by the Score-P measurement core. Here, the event-
specific information (e.g., the source-code region being entered or the number of bytes
transferred) is enriched with timestamps and hardware counter data (if configured), and then
passed on to the profiling and/or tracing substrates. At the end of measurement, the collected
profile and/or event trace data is written to disk, from where it can be consumed by the
supported analysis tools. In addition, the online interface provides access to the profiling data
already at runtime for use with online tools.

2.2 Scalasca Tracing Tools

The Scalasca Tracing Tools are a collection of trace-based performance analysis tools
distributed under a 3-clause BSD open-source license that have been specifically designed for
use on large-scale systems such as the IBM Blue Gene series or Cray XT and successors, but
also suitable for smaller HPC platforms. A distinctive feature of the Scalasca Tracing Tools is
its scalable automatic trace-analysis component which provides the ability to identify wait states
that occur, for example, as a result of unevenly distributed workloads [1]. Especially when
trying to scale communication intensive applications to large process counts, such wait states
can present severe challenges to achieving good performance. In addition to identifying wait
states and their root causes [2], the trace analyzer is also able to identify the activities on the
critical path of the target application [3], highlighting those routines which determine the length
of the program execution and therefore constitute the best candidates for optimization.

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 7

In contrast to previous versions of the Scalasca toolset – which used a custom measurement
system and trace data format – the Scalasca Tracing Tools 2.x release series is based on the
Score-P instrumentation and measurement infrastructure, which significantly improves
interoperability between Scalasca and other performance analysis tool suites through the use
of a common measurement system and data formats.

Figure 2: Scalasca performance analysis workflow.

Figure 2 depicts the basic Scalasca performance analysis workflow. First, the application has to
be instrumented and linked to the Score-P measurement libraries as outlined in Section 2.1.
The instrumented executable can then be run on the target system, by default generating a

summary profile report in CUBE4 format. Using the scalasca ïexamine helper

command, the resulting report file will be post-processed to split various generic metrics stored
in the Score-P report, such as “Time”, into a hierarchy of more specific metrics, such as “MPI
time” or “OpenMP barrier time”. This post-processed report is then opened in the Cube report
viewer for interactive analysis by the user. Besides providing an initial performance overview,
this profiling report can also be used to optimize the measurement configuration (e.g., by
defining filters to exclude functions from measurement to reduce the runtime overhead
introduced by the instrumentation). Once an appropriate measurement configuration has been
found, and the profile analysis shows that a further in-depth analysis using event traces is
required or worthwhile, the Score-P measurement mode can be changed to enable the
generation of detailed event traces. After the application execution has finished and the event
traces are flushed to disk, the Scalasca trace-analysis component can be run to automatically
analyze the trace data. Since the trace analyzer is a parallel program in its own right and
requires the same number of processes/threads than the target application, it is typically
started as part of the same batch job. Therefore, Scalasca provides a convenience command
which wraps the application launch command and automates the execution of the analyzer. As
a result, the trace analyzer produces an analysis report (also in CUBE4 format) very similar to
Score-P’s summary report, but enriched with additional, trace-based metrics. Again, a detailed
metric hierarchy is generated during the report post-processing step before opening the Cube
result browser.

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 8

 Integrated hybrid analysis 3

In this section, we detail our modifications and enhancements in both Score-P and Scalasca
towards an integrated analysis of applications using multiple parallel programming models in
combination. This covers generic enhancements to support task-based programming models,
instrumentation and measurement support for specific models, extended trace analyses, as
well as improvements in the result visualization. We also briefly mention work carried out in the
context of other projects to provide the full picture.

As the basis of our work, we started with the Score-P 1.2 and Scalasca 2.0 releases. Score-P
v1.2 provided support for MPI 2.2 using PMPI function interposition, OpenMP 3.0 (except for
untied tasks) using the OPARI2 source-to-source instrumenter, as well as CUDA using the
CUPTI interface. Scalasca v2.0 included a scalable wait-state analysis for MPI 2.2 and
OpenMP 2.5, except for nested OpenMP parallel regions. In addition, we built upon the
experiences gained while developing the prototypical OmpSs support for Score-P during the
first phase of the Mont-Blanc project.

3.1 Generic support for task-based programming models

In their general definition, tasks are functions or outlined code regions that can be executed
independently from the location where they are created. That is, whenever a thread encounters
a (model-specific) task creation construct, it creates a specific instance of executable code and
its data environment, and adds it to the task queue of a runtime system for later execution on
an arbitrary thread. This represents an inherently asynchronous execution model. The specifics
of the task scheduling process, the task execution order, dependencies between tasks, or
requirements to be side-effect free may vary between different runtime implementations or
programming models. In this context, the basic objective for a measurement tool is to
reconnect the creation and execution points of tasks to correctly attribute execution times and
provide the user with a coherent view of his application run.

Listing 1: Prototypes of the task event handling functions provided by the Score-P
measurement core.

void

SCOREP_ThreadForkJoin_TaskCreate (SCOREP_ParadigmType paradigm ,

 uint32_t threadId ,

 uint32_t genN umber);

void

SCOREP_ThreadForkJoin_TaskSwitch (SCOREP_ParadigmType paradigm ,

 SCOREP_TaskHandle task);

SCOREP_TaskHandle

SCOREP_ThreadForkJoin_ TaskBegin (SCOREP_ParadigmType paradigm ,

 SCOREP_RegionHandle regionHandle ,

 uint32_t threadId ,

 uint32_t genN umber);

void

SCOREP_ThreadForkJoin_TaskEnd (SCOREP_ParadigmType paradigm ,

 SCOREP_RegionHandle regionHandle ,

 SCOREP_TaskHandle task);

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 9

To create a generic task model for Score-P with low overhead, a minimal set of additional event
calls has been defined. The four function calls shown in Listing 1 are provided by the Score-P
measurement core and responsible for keeping the connection between creation and execution

points. The TaskCreate call marks the creation point and generates a unique identifier out

of thread-local information (identifier of the creating thread and a thread-local task creation

counter), thus avoiding the need for locking. Based on this identifier, the TaskBegin and

TaskEnd calls can manage task-local data with relation to the task creation point. The

TaskSwitch call is responsible for tracking the actual context switch from one task to

another, in particular since in the general case tasks can be suspended and resumed multiple
times.

Due to its generic nature, Score-P’s task model can be used on any tasking system as long as
it can be semantically mapped to this structure. Currently, it is employed for OpenMP, OmpSs,
and MTAPI [4].

3.1.1 Score-P measurement and profiling

During a Score-P measurement run, the model-specific runtime events are mapped by the
corresponding adapter to the core task calls shown above, which are responsible for tracking
tasks and the connection between their creation and execution. This information is combined
with events generated by other means of instrumentation, for example, automatic compiler-
based function instrumentation, to create the corresponding call paths for task creation and the
execution of the task itself.

To support untied tasks, that is, tasks that might migrate between threads during their
execution, we extended Score-P’s measurement core to maintain a global task table rather
than thread-local data structures to track all currently running tasks. This required a significant
amount of refactoring and special care to avoid introducing too much runtime overhead, as
tasks are usually only small units of work and thus task switching occurs very frequently. At this
point, Score-P works for untied tasks according to the OpenMP 3.1 specification, i.e.,
suspension, resumption, and migration of tasks is only allowed at defined task scheduling
points.

The further processing of the generic task events depends on the substrate used. In the case
of tracing, the task events as well as the ENTER and LEAVE events of the respective regions
are directly written to the OTF2 trace to be used for display and analysis in tools like Scalasca
and Vampir. In the case of profiling, the events are post-processed before creating the resulting
CUBE4 file. In light of the asynchronous nature of tasks and with particular regard to the
possibility of suspending and resuming their execution, displaying a task’s possibly partial sub-
call tree in the context of the creation point is often not consistently possible and also impedes
readability. Therefore, we opted for moving the task executions and their call trees to a
separate (artificial) root node in the Cube call tree display (see Section 3.2.2).

3.1.2 Scalasca trace analysis

With Scalasca v2.2, basic support for analyzing traces that contain tasking events has been
released. One of the core requirements for Scalasca’s automatic trace analysis is the
consistency of the trace, as the analysis is based on a replay approach and inconsistent data
may lead to unexpected crashes or deadlocks during the analysis. Since tasks represent
asynchronous execution, they basically have their own call stacks and history which is

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 10

independent from the main call stack. Therefore, we implemented a per-task call history and
the independent management of the tasks’ respective call stacks. As the task executions are
handled like functions, and thus the ENTER and LEAVE events of their regions are
indistinguishable from “regular” function executions, the specific tasking events mentioned
above as well as knowledge about the expected event order are used to trigger the call-stack
management. With this knowledge the Scalasca analyzer is able to replay the event streams
and analyze the trace data. However, due to inherent limitations of its current implementation
only tied tasks can be supported. The results of the trace analysis follow the presentation style
of the Score-P profile, using an artificial root node collecting the tasks’ sub-call trees as well as
stub nodes to represent task executions.

3.2 Integrated result presentation of hybrid asynchronous applications

Besides the pure instrumentation, measurement, and analysis capabilities, providing an
integrated presentation of the analysis results of hybrid asynchronous applications poses its
own challenges. In this section, we outline the enhancements made to improve the user
experience in such scenarios.

3.2.1 Analysis report post-processing

As outlined in Section 2.2, post-processing of Score-P summary reports as well as Scalasca
trace analysis reports is an integral part of the Scalasca performance analysis workflow and

supported by the scalasc a ïexamine convenience command. Under the hood, this

command performs a so-called remapping, which describes the process of restructuring and
recalculating the metric tree of a CUBE4 result file. The objective of this restructuring is to
increase the specificity of the information provided by the metrics, for example, by breaking the
generic “Time” metric down into more fine-grained metrics such as “MPI communication time”
or “OpenMP critical section time”. The remapping process takes the flat metric hierarchy of an
input CUBE4 result file as produced by either Score-P or Scalasca and calculates such sub-
metrics based on calculation rules defined in an XML specification file. The output of this
remapping process is again a CUBE4 file.

Although being very similar, the Score-P and Scalasca reports obviously differ in the amount of
detail they provide (i.e., in the number of included metrics). Thus, different calculation rules

have to be applied during the remapping process. The scalasca - examine command

of the Scalasca toolchain automatically chooses the correct specification file depending on the
input and transparently executes the remapping process when a report is opened for the first
time. The post-processed report is then cached in the experiment directory and opened directly
if the result is examined again.

In the context of this deliverable, the remapping process has been improved in various ways:

¶ With Score-P supporting more and more parallel programming paradigms, additional
model-specific sub-hierarchies were added to the remapper calculation specifications.
In particular, we defined new sub-hierarchies for OmpSs, OpenCL, CUDA, and POSIX
threads.

¶ Originally, all model-specific hierarchies were included in the post-processed analysis
report file and subsequently shown to the user in the Cube browser. To improve the
user experience, we reworked the remapping process such that only the respective

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 11

metric hierarchies of the programming models that are actually used by the application
are calculated and shown.

¶ We defined an alternative metric hierarchy and implemented a corresponding
remapper calculation specification (see the example below).

¶ With increasing numbers of processes and threads, the size of the generated Cube
files also increases significantly ― and with it the duration of the remapping process.
However, since the remapping is carried out as part of the interactive result
presentation, it has to be reasonably fast. As a side effect of reworking the calculation
specification files, we were able to identify and eliminate a number of inefficiencies
such as redundant calculations. In addition, several optimizations were applied to the
remapping calculation routines in the Cube library. These efforts led to a significant
reduction in both the time and memory required for the post-processing.

Figure 3 shows a comparison of the two alternative “Time” metric hierarchies for an example
Score-P profile measurement run of the Gromacs simulation code.1 Gromacs is a package for
molecular dynamics calculations with a primary focus on biochemical molecules like proteins,
lipids, and nucleic acids. The simulation was configured to use MPI, OpenMP, and CUDA in
combination. On the left hand side, the original “Time” metric hierarchy including the newly
defined CUDA sub-hierarchy is shown. It breaks the overall execution time down into
computation and time spent in activities related to the different programming models in use.
This model-specific time is then split further into more specific categories (if applicable). The
screenshot on the right shows the alternative metric hierarchy, which on the top level
categorizes the execution time into computation and higher-level activities such as
communication, synchronization, management, etc. The breakdown by programming model
happens on the following level of the hierarchy.

The advantage of this alternative hierarchy is that it allows for an easier overview and direct
answers to common questions such as “How much time does my application spend in
communication or synchronization compared to computation?” even in the presence of multiple
programming models. Thus, it can be considered to provide a more integrated view on the
application’s performance behavior. It should be noted that these questions can also be
answered using the original hierarchy by selecting multiple nodes in the metric hierarchy,
however, this becomes tedious and error-prone the more programming models are involved.

We are currently in the process of evaluating the pros and cons of both hierarchies in close
collaboration with a number of application developers, and also plan to present these two
alternatives at upcoming workshops to get further feedback. Preliminary results indicate that
both views may be appropriate depending on the user’s specific interest, and thus, a
convenient way of selecting the preferred view or even interactively switching between them
may be required.

1 The difference in computation time between the two hierarchies can be explained by the fact that the alternative
specification does not yet handle CUDA kernel launches (4.05s) and uncategorized CUDA activities (6.19s). Thus,
this time is still attributed as computation. This limitation will be fixed in the near future.

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 12

Figure 3: Original ñTimeò metric hierarchy (left) and alternative hierarchy (right) for an example
profile measurement run of the Gromacs molecular dynamics simulation using MPI, OpenMP,

and CUDA in combination.

3.2.2 Call tree visualization

The call tree view of the Cube display represents the call path information aggregated over all
threads or in more general terms over all locations. In the traditional synchronous execution
models, the call paths visited by the individual threads share some common parent call path,
for example, an OpenMP parallel region construct. Thus, the corresponding sub-call trees can
be presented as children of this parent call path. This also fits with the inclusive/exclusive
property of the Cube call tree display, that is, a collapsed OpenMP parallel region call path
node aggregates the inclusive value of the selected metric (e.g., time) across all threads, as the
threads’ execution is entirely nested within the parallel region. The breakdown for the individual
threads/locations then happens in the rightmost panel of the Cube display, the system tree.

This conformity of the call paths is lost when threads execute distinctly different call paths. For
example, a POSIX thread started in one call path on the master thread executes completely
independently from the master, typically runs longer than the function where the

pthread_create call occurred, and can even be joined by another thread at a very

different call path. This also happens for code run on accelerator locations, which execute their
kernels while the CPU thread continues its own execution, or for threading locations when
tasks are used and the worker threads just perform a sequence of task executions. While tasks,
and to a degree also kernels, can have their own sub-call trees, they usually have relatively flat
hierarchies since they are typically small execution units to support the automatic load
balancing approach.

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 13

With the rising number of asynchronous parallel programming models, we concluded that a
standardized representation of the asynchronous elements is necessary to direct the user to
recognizable and recurring elements during the analysis of his hybrid code. Our current
implementation design therefore introduces artificial top-level call tree nodes named THREADS,
TASKS, and KERNELS. These nodes do not have a region counterpart in the application code,
that is, only serve structural purposes by grouping the sub-call trees of the corresponding
asynchronous constructs, and are always shown at the bottom of the Cube call tree panel.
Moreover, we intentionally only distinguish between these coarse categories and not individual
programming models to improve readability. While support for the THREADS and TASKS
nodes is already available, we are currently finalizing the implementation to introduce the
KERNELS node.

3.3 Support for additional programming models

To provide a comprehensive hybrid performance analysis to the application developer, Score-P
was extended to support instrumentation and measurement of additional programming models
besides MPI and OpenMP. In particular, support for OmpSs and OpenCL was developed as
part of the Mont-Blanc project and is detailed in the following two subsections. Finally, the third
subsection gives an overview of further programming models whose support was developed
and added to Score-P in the context of other projects.

3.3.1 OpenCL

Support for instrumenting and measuring OpenCL applications was developed as part of the
second phase of the Mont-Blanc project and has been released with Score-P v1.4. The
instrumentation strategy is twofold. OpenCL API functions are intercepted by library wrapping,
that is, symbol renaming at application link time. Additionally, kernel executions are buffered by
the OpenCL runtime and processed by the Score-P measurement system at specific
synchronization points or at the end of the measurement run, respectively. Aside from the
kernel information, Score-P is also able to record OpenCL buffer read/writes and the memory
usage of OpenCL through counting of allocations. Various measurement settings (e.g., the size
of the event and command queue buffers or which OpenCL functionality to track) can be
configured through environment variables.

In Figure 4, a screenshot of an example profile run of Gromacs is shown. Here, the simulation
was configured to use MPI, OpenMP, and OpenCL. As can be seen, the OpenCL activity is
recorded on a separate location in the system tree, identified by the device name (i.e., “Tesla
K20Xm”), which is attached to the controlling process.2 The API calls appear at their respective
positions in the main call tree. The user has to keep in mind that some of these, for example,
memory transfers, due to their asynchronous nature happen in the background controlled by
the OpenCL runtime. Therefore, the measured regions represent the scheduling point and
reflect the respective source code locations.

2 To be precise, each OpenCL command queue created by the application will be represented by a separate
location in the system tree.

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 14

Figure 4: Hybrid Gromacs run using MPI, OpenMP and OpenCL. Highlighted are exemplary
OpenCL API calls executed by the master thread as well as the two OpenCL kernels executed

on a Tesla K20Xm GPU.

3.3.2 OmpSs

Instrumentation of OmpSs applications is based on a runtime event system, in contrast to
library wrapping or source-based instrumentation as used by OPARI2. Therefore, the task of
supporting such a model consists of interpreting, filtering, and mapping the events generated
by the runtime system to the semantics of the internally used concepts, e.g., task model,
threading events, and call path regions. To allow access to the event system, the Nanos++
OmpSs runtime provides a plugin interface which enables tool developers to create a plugin to
interface with their own measurement system.

A prototypical plugin for the Nanos++ OmpSs runtime as well as a corresponding Score-P
adapter had already been developed during the first phase of the Mont-Blanc project.
Throughout the second phase, we enhanced this interface in various ways and continuously
updated the implementation to account for new developments in Nanos++ and Score-P.

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 15

Figure 5: Score-P and OmpSs runtime component interaction

Figure 5 shows how the OmpSs support based on the OmpSs plugin interface is implemented
in Score-P. While the OmpSs plugin interface provides direct and detailed information from the
runtime, it also introduces a strong dependency on the runtime implementation. Therefore, the
plugin, although its source is packaged with Score-P, is built separately ― if necessary with a
different compiler. The plugin interacts with the Score-P measurement system through a
minimal interface connecting to the OmpSs adapter, thus reducing the coupling through an
additional level of abstraction. In this constellation, the plugin gathers the information of the
runtime and sends a filtered set of events to the adapter, which maps these events to the
corresponding Score-P region, threading, and task events. Since the OmpSs runtime is
focused on tasks, almost all events passed through this interface are either task or basic thread
information; user function or MPI instrumentation is provided through the respective existing
Score-P adapters.

As Score-P’s OmpSs adapter maps the events provided by the plugin onto the generic task
handling functions outlined in Section 3.1, the enhanced Scalasca trace analysis also works on
OTF2 trace experiments generated from OmpSs applications without further modification, also
when used in combination with MPI.

Figure 6: Example of a Scalasca trace analysis of a hybrid MPI+OmpSs n-body solver
measured the Mont-Blanc prototype cluster.

Score-P

Measurement

Core

Nanos++

OmpSs

Runtime

Score-P

Plugin

OmpSs

Adapter

Score-P distribution

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 16

The example in Figure 6 shows the result of a Scalasca trace analysis of an n-body solver.
Although the program has been taskified and does the bulk of the computation in the task

function calculate_force_func , the focus of the analysis shown in this screenshot is

on the MPI waiting times. The post-processed metric tree in the left panel shows the wait-state
patterns Scalasca identified in this measurement run, while the middle and right panel highlight
where in call tree and system location these patterns occur.

In parallel to the OmpSs-specific plugin implementation, we participate in the discussions about
a standardized OpenMP tools interface (OMPT). Details on the OMPT interface specification,
the current state of the implementation in the Nanos++ runtime, and the prototypical tool
implementations can be found in deliverable D5.6. When the OMPT interface is ratified and
able to replace the aforementioned functionality, the necessity to provide an own tool-specific
runtime plugin ceases to exist, as a standard OMPT plugin would be provided by the OmpSs
runtime.

3.3.2.1 OmpSs using OpenCL targets

Within the Mont-Blanc project, OmpSs is also used in conjunction with OpenCL to leverage the
computational power of the GPU available on the ARM-based Mont-Blanc cluster prototype. On
the level of the OmpSs programming model, this results in the use of the target device(opencl)
clause in the task statement. This clause indicates that the following task should be executed
on the specified device instead of a CPU thread. However, since all OpenCL API calls are
hidden inside the OmpSs runtime and are thus outside the area of influence of the user, it is not
advisable to intercept and present all OpenCL calls using the method described in Section
3.3.1 to avoid confusion on the user’s side who did not write these OpenCL calls explicitly.
Instead, the OmpSs runtime creates an additional CPU thread as a stand-in for the GPU target
location and generates appropriate events to represent the execution of tasks as kernels on the
GPU.

To create consistent and helpful results with Score-P, the measurement system on the one
hand has to treat this OmpSs GPU thread internally as an additional CPU thread, and on the
other hand has to visibly mark it as the GPU representative such that the user can easily
distinguish between kernel executions on the CPUs and on the GPU. Otherwise, the event
stream on the GPU thread is ― from the Score-P perspective ― indistinguishable from any
other worker thread, showing a sequence of task executions. This also allows for a Scalasca
trace analysis, which is not yet capable of handling “real” GPU locations.

Figure 7 shows an example profile of an n-body solver test case run on a single ARM node of
the Mont-Blanc prototype cluster. In this screenshot, the integration of the GPU tasks into the

Score-P task model can be seen. The GPU kernel calculate_force_kernel is

treated in the same way as any other task (middle column), but can still be matched to the GPU
by using the system tree location as reference (right column). The kernel name itself is chosen
by the user, so it does not necessarily indicate a GPU kernel. In the metric tree (left column),
task execution is categorized as computation, while task creation and the taskwait construct
are considered synchronization and management overhead of the OmpSs programming model.

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 17

Figure 7: Example of the OmpSs GPU thread integration into the Score-P task model.

3.3.3 Programming model support developed outside of Mont-Blanc

3.3.3.1 MPI

Support for MPI 2.2 was already part of the initial Score-P design and is available since the first
release. Instrumentation is done by providing a pre-instrumented library which leverages the
standard PMPI profiling interface. Support for the latest MPI 3.1 standard version is currently
under development.

3.3.3.2 OpenMP

Likewise, support for OpenMP 3.0 was a core functional requirement for the initial Score-P
release. The primary way for instrumenting OpenMP constructs is via the OPARI2 source-to-
source pre-processor. With respect to tasks, Score-P initially only supported tied tasks,
however, as outlined in Section 3.1.1, support for untied task (i.e., task migration) has
subsequently been added and was released with Score-P v1.4.

3.3.3.3 CUDA

CUDA instrumentation and measurement in Score-P follows a similar strategy as the OpenCL
support described in Section 3.3.1. The CUPTI interface of CUDA provides the buffered device
activity and these events are post-processed by the Score-P measurement system either at
specific synchronization points or at the end of measurement. A major difference, however, is
the way in which API functions are recorded, as CUPTI allows access to host-side runtime and
driver events through call-back functions. Through a set of environment variables similar to the
ones provided by the OpenCL support, the user can control the level of detail for the CUDA
measurements, including a varying number of host-side call-backs as well as memory usage
information. CUDA support was developed as part of the EU ITEA2 project H4H and released
with Score-P v1.1.

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 18

3.3.3.4 SHMEM

As alternative inter-node paradigm to MPI, support for SHMEM was added with Score-P v1.3. It
allows the instrumentation of SHMEM library calls for one-sided communication by library
wrapping at link time. Currently, the implementation is known to work with the OpenSHMEM
reference implementation, the Open MPI implementation, SGI SHMEM, and Cray SHMEM.

3.3.3.5 POSIX threads

Basic support for POSIX threads (Pthreads) instrumentation and measurement was developed
in the context of the RAPID project [5] and introduced with Score-P v1.3. At present, Score-P
only tracks the most important Pthreads routines, that is, functions that are responsible for
creating, joining, synchronizing, and terminating POSIX threads. These routines are intercepted
using symbol renaming at application link time. In addition to the instrumentation and
measurement capabilities in Score-P, basic Pthreads support was also added to the Scalasca
trace analyzer and released in version 2.2. In particular, the analyzer was extended to detect
and quantify lock contention overheads – a new analysis that due to the generic event model
used by OTF2 also works for OpenMP locks.

Figure 8: Example profile of the PEPC tree code for solving n-body problems
(32 MPI ranks with 14 POSIX threads per rank on JUROPA).

Figure 8 shows a profile of PEPC [7] configured to use 32 MPI ranks with 14 simultaneous
POSIX threads each. PEPC is a tree code for solving n-body problems and one of the Mont-
Blanc applications. The most challenging component of PEPC in terms of scalability is the tree

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 19

traversal routine, which in this particular implementation was parallelized using a combination
of MPI and Pthreads. In each iteration step, a group of Pthreads is created, one thread for
communication and 13 threads for calculations. Each thread invokes the thread_helper routine,
shown in a separate subtree under the artificial THREADS node in the call tree view (middle
column). The run_communication_loop routine is called only by the communication thread,
whereas all other threads call walk_worker_thread. As soon as all threads invoked the
thread_helper routine, the main application thread waits for the termination of all child threads
before proceeding to the next iteration. The system tree view (right column) displays all
individual threads created throughout the execution. Since PEPC is an iterative solver, their
overall number can be quite substantial. To address this issue, Score-P provides an
experimental feature to reuse Pthreads locations, which can be enabled by setting a
corresponding environment variable (i.e., SCOREP_PTHREAD_EXPERIMENTAL_REUSE).

3.3.3.6 Other create/wait threading models

Also in the context of the RAPID project, support for further create/wait threading models (i.e.,
Windows threads, Qt threads, and ACE threads) was integrated into Score-P. While Qt and
ACE threads use either POSIX or Windows threads underneath, the goal in this project was to
present the threading calls on the level of abstraction actually used by the application
developer. To intercept the threading routines, the dynamic binary instrumentation tool Intel Pin
[8] was used. Score-P and Intel Pin were coupled in order to produce profiles and traces
compatible with Score-P, Cube, and Vampir. Results of this project are available to the project
partners in a development branch of Score-P.

3.3.3.7 EMB2 / MTAPI

Likewise, prototypical support for EMB2 [6], a particular implementation of the Multicore Task
Management API (MTAPI), was developed in the context of the RAPID project. Similar to other
programming models, instrumentation is again based on symbol renaming at link time. This
implementation is currently available in a Score-P development branch to the project partners.

 Conclusion and future work 4

In this deliverable, we have detailed our modifications and enhancements to the Score-P
instrumentation and measurement infrastructure as well as the Scalasca Tracing Tools
package implemented within the Mont-Blanc project towards an integrated analysis of hybrid
applications using multiple parallel programming models in combination. In particular, we
focused on the support for the OmpSs and OpenCL programming models as well as the
challenges introduced by the asynchronous nature of create/wait-type threading and task-
based programming. Various examples show that Score-P and Scalasca effectively support the
performance analysis of hybrid codes using a single, coherent workflow and a unified result
presentation.

Obviously, supporting many different and evolving programming models is an ongoing effort.
Therefore, we will update and enhance both Score-P and Scalasca to support functionality
added with new revisions of the programming model specifications. A particular focus will be on
supporting the final OMPT specification, including accelerator support via the target directive. In
addition, we will continue to evaluate the result visualization alternatives in the Cube browser in
close collaboration with application developers.

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 20

Acronyms and Abbreviations

- ACE Adaptive Communication Environment; Object-oriented network programming toolkit
- API Application Programming Interface
- CUDA Compute Unified Device Architecture; API to for GPGPU programming (NVIDIA)

CUPTI CUDA profiling tools interface (NVIDIA)
- MPI Message passing interface standard (MPI Forum)
- MTAPI Multicore Task Management API (Multicore Association)
- Nanos++ Task-oriented runtime system of BSC (used for OmpSs)
- OPARI2 Source-to-source preprocessor for OpenMP pragma and region instrumentation

(JUELICH and others)
- OpenCL Open Computing Language; Industry standard for parallel programming of

heterogeneous architectures (Khronos Group)
- OpenMP Industry standard for pragma-based parallel programming paradigm for shared

memory computers (OpenMP ARB)
- OmpSs OpenMP extension (including task dependences and accelerator support) of BSC
- OMPT Draft standard OpenMP performance Tools interface (OpenMP ARB)
- POSIX Portable Operationg System Interface (IEEE)
- Scalasca Parallel trace-based performance analyzer of JUELICH
- Score-P Parallel program instrumentation and measurement package of JUELICH, TU

Dresden and other partners
- SHMEM Symmetric Hierarchical Memory access; family of parallel programming libraries,

providing remote memory access via one-sided communications.

D5.8 Integrated Hybrid Scalasca Analysis
Version 1.0

 21

References

[1] M. Geimer, F. Wolf, B. J. N. Wylie and B. Mohr, "A scalable tool architecture for

diagnosing wait states in massively parallel applications," Parallel Computing,

vol. 35, no. 7, pp. 375-388, July 2009.

[2] D. Böhme, M. Geimer, F. Wolf and L. Arnold, "Identifying the root causes of wait

states in large-scale parallel applications," in Proc. of the 39th International

Conference on Parallel Processing (ICPP), San Diego, CA, USA, IEEE Computer

Society, 2010, pp. 90-100.

[3] D. Böhme, B. R. de Supinski, M. Geimer, M. Schulz and F. Wolf, "Scalable

Critical-Path Based Performance Analysis," in Proc. of the 26th IEEE

International Parallel & Distributed Processing Symposium (IPDPS), Shanghai,

China, IEEE Computer Society, 2012, pp. 1330-1340.

[4] MTAPI website. http://www.multicore-association.org/workgroup/mtapi.php

[5] Website of RAPID project. http://www.fz-juelich.de/ias/jsc/EN/

Research/HPCTechnology/PerformanceAnalyse/RAPID/rapid.html

[6] EMBB
2
 website. https://github.com/siemens/embb

[7] PEPC website. http://www.fz-juelich.de/ias/jsc/EN/AboutUs/

Organisation/ComputationalScience/Simlabs/slpp/SoftwarePEPC/_node.html

[8] Intel Pin website. https://software.intel.com/en-us/articles/pin-a-dynamic-binary-

instrumentation-tool

