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Executive Summary 

To make effective use of current high-performance computing (HPC) architectures, developers 
of scientific simulation codes often have to use multiple parallel programming models in 
combination. To assist application developers in optimizing such hybrid codes, it is important to 
provide them with powerful performance analysis tools that are capable of dealing with multiple 
parallel programming models concurrently. 

In this deliverable, we describe our modifications and enhancements to the Score-P 
instrumentation and measurement infrastructure as well as the Scalasca Tracing Tools 
package implemented within the Mont-Blanc project towards an integrated analysis of hybrid 
applications using multiple parallel programming models in combination. In particular, we focus 
on the support for the OmpSs and OpenCL programming models as well as the challenges 
introduced by the asynchronous nature of create/wait-type threading and task-based 
programming. Various examples highlight that Score-P and Scalasca now effectively support 
the performance analysis of hybrid codes using a single, coherent workflow and a unified result 
presentation.  
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 Introduction 1

To make effective use of current high-performance computing (HPC) architectures, developers 
of scientific simulation codes often have to use multiple parallel programming models in 
combination. For example, simulation codes may use the Message Passing Interface (MPI) for 
inter-node communication, OpenMP for parallelizing work across multiple cores within a node, 
and CUDA or OpenCL to leverage accelerators like GPGPUs or Intel Xeon Phi many-core co-
processors attached to the node. To assist application developers in optimizing such hybrid 
codes, it is important to provide them with performance analysis tools that are capable of 
dealing with multiple parallel programming models concurrently. 
 
In this deliverable, we describe the work done to accomplish this goal in the Score-P 
instrumentation and measurement system as well as the Scalasca trace analysis package. The 
document is structured as follows: Section 2 provides a brief overview of the Score-P and 
Scalasca packages. Next, Section 3 describes our modifications and enhancements in both 
components towards an integrated analysis. Finally, Section 4 concludes the deliverable and 
outlines future work. 

 Software components 2

This section provides a brief overview of the two software components that have been modified 
in the context of this deliverable and how they interact with each other. First, the Score-P 
instrumentation and measurement system is described, followed by an overview of the 
Scalasca Tracing Tools package. 

2.1 Score-P instrumentation and measurement system 

Score-P is a portable and highly scalable instrumentation and performance measurement 
infrastructure jointly developed by a consortium of partners from Germany and the US under a 
3-clause BSD open-source license. It supports profile and detailed event trace generation as 
well as an online interface for accessing profile data at runtime. Due to the common data 
formats CUBE4 for profiles and the Open Trace Format 2 (OTF2) for event traces, Score-P 
supports a number of analysis tools with complementary functionality. Currently, Score-P works 
with the Periscope Tuning Framework (TU Munich), Scalasca & Cube (jointly developed by 
Jülich Supercomputing Centre, GRS Aachen, and TU Darmstadt), Vampir (TU Dresden), and 
TAU (University of Oregon). 
 
Figure 1 shows an overview of the Score-P architecture. Before performance data can be 
collected, the target application needs to be instrumented and linked to the Score-P 
measurement libraries, that is, extra code is inserted into the application’s code to intercept 
relevant events at runtime. This process can be accomplished in various ways, for example, by 

¶ source-code annotations manually inserted by the user, 

¶ leveraging automatic instrumentation functionality provided by the compiler, 

¶ source-to-source pre-processing, 

¶ linking to pre-instrumented libraries, 

¶ function wrapping through symbol renaming at link time, or 

¶ registering call-back functions with a particular runtime system. 
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Figure 1: Overview of the Score-P instrumentation and measurement system architecture 

and the interfaces to the supported analysis tools. 
 
For each type of instrumentation, Score-P implements a corresponding instrumentation 
wrapper ― a so-called adapter ― which maps the specific instrumentation events onto more 
generic event handling functions provided by the Score-P measurement core. Here, the event-
specific information (e.g., the source-code region being entered or the number of bytes 
transferred) is enriched with timestamps and hardware counter data (if configured), and then 
passed on to the profiling and/or tracing substrates. At the end of measurement, the collected 
profile and/or event trace data is written to disk, from where it can be consumed by the 
supported analysis tools. In addition, the online interface provides access to the profiling data 
already at runtime for use with online tools. 

2.2 Scalasca Tracing Tools 

The Scalasca Tracing Tools are a collection of trace-based performance analysis tools 
distributed under a 3-clause BSD open-source license that have been specifically designed for 
use on large-scale systems such as the IBM Blue Gene series or Cray XT and successors, but 
also suitable for smaller HPC platforms. A distinctive feature of the Scalasca Tracing Tools is 
its scalable automatic trace-analysis component which provides the ability to identify wait states 
that occur, for example, as a result of unevenly distributed workloads [1]. Especially when 
trying to scale communication intensive applications to large process counts, such wait states 
can present severe challenges to achieving good performance. In addition to identifying wait 
states and their root causes [2], the trace analyzer is also able to identify the activities on the 
critical path of the target application [3], highlighting those routines which determine the length 
of the program execution and therefore constitute the best candidates for optimization. 
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In contrast to previous versions of the Scalasca toolset – which used a custom measurement 
system and trace data format – the Scalasca Tracing Tools 2.x release series is based on the 
Score-P instrumentation and measurement infrastructure, which significantly improves 
interoperability between Scalasca and other performance analysis tool suites through the use 
of a common measurement system and data formats. 
 
 

 
 

Figure 2: Scalasca performance analysis workflow. 
 
Figure 2 depicts the basic Scalasca performance analysis workflow. First, the application has to 
be instrumented and linked to the Score-P measurement libraries as outlined in Section 2.1. 
The instrumented executable can then be run on the target system, by default generating a 

summary profile report in CUBE4 format. Using the scalasca ïexamine  helper  

command, the resulting report file will be post-processed to split various generic metrics stored 
in the Score-P report, such as “Time”, into a hierarchy of more specific metrics, such as “MPI 
time” or “OpenMP barrier time”. This post-processed report is then opened in the Cube report 
viewer for interactive analysis by the user. Besides providing an initial performance overview, 
this profiling report can also be used to optimize the measurement configuration (e.g., by 
defining filters to exclude functions from measurement to reduce the runtime overhead 
introduced by the instrumentation). Once an appropriate measurement configuration has been 
found, and the profile analysis shows that a further in-depth analysis using event traces is 
required or worthwhile, the Score-P measurement mode can be changed to enable the 
generation of detailed event traces. After the application execution has finished and the event 
traces are flushed to disk, the Scalasca trace-analysis component can be run to automatically 
analyze the trace data. Since the trace analyzer is a parallel program in its own right and 
requires the same number of processes/threads than the target application, it is typically 
started as part of the same batch job. Therefore, Scalasca provides a convenience command 
which wraps the application launch command and automates the execution of the analyzer. As 
a result, the trace analyzer produces an analysis report (also in CUBE4 format) very similar to 
Score-P’s summary report, but enriched with additional, trace-based metrics. Again, a detailed 
metric hierarchy is generated during the report post-processing step before opening the Cube 
result browser. 
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 Integrated hybrid analysis 3

In this section, we detail our modifications and enhancements in both Score-P and Scalasca 
towards an integrated analysis of applications using multiple parallel programming models in 
combination. This covers generic enhancements to support task-based programming models, 
instrumentation and measurement support for specific models, extended trace analyses, as 
well as improvements in the result visualization. We also briefly mention work carried out in the 
context of other projects to provide the full picture. 
 
As the basis of our work, we started with the Score-P 1.2 and Scalasca 2.0 releases. Score-P 
v1.2 provided support for MPI 2.2 using PMPI function interposition, OpenMP 3.0 (except for 
untied tasks) using the OPARI2 source-to-source instrumenter, as well as CUDA using the 
CUPTI interface. Scalasca v2.0 included a scalable wait-state analysis for MPI 2.2 and 
OpenMP 2.5, except for nested OpenMP parallel regions. In addition, we built upon the 
experiences gained while developing the prototypical OmpSs support for Score-P during the 
first phase of the Mont-Blanc project. 

3.1 Generic support for task-based programming models 

In their general definition, tasks are functions or outlined code regions that can be executed 
independently from the location where they are created. That is, whenever a thread encounters 
a (model-specific) task creation construct, it creates a specific instance of executable code and 
its data environment, and adds it to the task queue of a runtime system for later execution on 
an arbitrary thread. This represents an inherently asynchronous execution model. The specifics 
of the task scheduling process, the task execution order, dependencies between tasks, or 
requirements to be side-effect free may vary between different runtime implementations or 
programming models. In this context, the basic objective for a measurement tool is to 
reconnect the creation and execution points of tasks to correctly attribute execution times and 
provide the user with a coherent view of his application run. 
 

 
 

Listing 1: Prototypes of the task event handling functions provided by the Score-P 
measurement core. 

 

void  

SCOREP_ThreadForkJoin_TaskCreate (  SCOREP_ParadigmType paradigm ,  

                                  uint32_t            threadId ,  

                                  uint32_t            genN umber  );  

void  

SCOREP_ThreadForkJoin_TaskSwitch (  SCOREP_ParadigmType paradigm ,  

                                  SCOREP_TaskHandle   task );  

SCOREP_TaskHandle 

SCOREP_ThreadForkJoin_ TaskBegin (  SCOREP_ParadigmType paradigm ,  

                                 SCOREP_RegionHandle regionHandle ,  

                                 uint32_t            threadId ,  

                                 uint32_t            genN umber  );  

void  

SCOREP_ThreadForkJoin_TaskEnd (  SCOREP_ParadigmType paradigm ,  

                               SCOREP_RegionHandle regionHandle ,  

                               SCOREP_TaskHandle   task );  
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To create a generic task model for Score-P with low overhead, a minimal set of additional event 
calls has been defined. The four function calls shown in Listing 1 are provided by the Score-P 
measurement core and responsible for keeping the connection between creation and execution 

points. The TaskCreate  call marks the creation point and generates a unique identifier out 

of thread-local information (identifier of the creating thread and a thread-local task creation 

counter), thus avoiding the need for locking. Based on this identifier, the TaskBegin  and 

TaskEnd  calls can manage task-local data with relation to the task creation point. The 

TaskSwitch  call is responsible for tracking the actual context switch from one task to 

another, in particular since in the general case tasks can be suspended and resumed multiple 
times. 
 
Due to its generic nature, Score-P’s task model can be used on any tasking system as long as 
it can be semantically mapped to this structure. Currently, it is employed for OpenMP, OmpSs, 
and MTAPI [4]. 

3.1.1 Score-P measurement and profiling 

During a Score-P measurement run, the model-specific runtime events are mapped by the 
corresponding adapter to the core task calls shown above, which are responsible for tracking 
tasks and the connection between their creation and execution. This information is combined 
with events generated by other means of instrumentation, for example, automatic compiler-
based function instrumentation, to create the corresponding call paths for task creation and the 
execution of the task itself. 
 
To support untied tasks, that is, tasks that might migrate between threads during their 
execution, we extended Score-P’s measurement core to maintain a global task table rather 
than thread-local data structures to track all currently running tasks. This required a significant 
amount of refactoring and special care to avoid introducing too much runtime overhead, as 
tasks are usually only small units of work and thus task switching occurs very frequently. At this 
point, Score-P works for untied tasks according to the OpenMP 3.1 specification, i.e., 
suspension, resumption, and migration of tasks is only allowed at defined task scheduling 
points. 
 
The further processing of the generic task events depends on the substrate used. In the case 
of tracing, the task events as well as the ENTER and LEAVE events of the respective regions 
are directly written to the OTF2 trace to be used for display and analysis in tools like Scalasca 
and Vampir. In the case of profiling, the events are post-processed before creating the resulting 
CUBE4 file. In light of the asynchronous nature of tasks and with particular regard to the 
possibility of suspending and resuming their execution, displaying a task’s possibly partial sub-
call tree in the context of the creation point is often not consistently possible and also impedes 
readability. Therefore, we opted for moving the task executions and their call trees to a 
separate (artificial) root node in the Cube call tree display (see Section 3.2.2). 

3.1.2 Scalasca trace analysis 

With Scalasca v2.2, basic support for analyzing traces that contain tasking events has been 
released. One of the core requirements for Scalasca’s automatic trace analysis is the 
consistency of the trace, as the analysis is based on a replay approach and inconsistent data 
may lead to unexpected crashes or deadlocks during the analysis. Since tasks represent 
asynchronous execution, they basically have their own call stacks and history which is 
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independent from the main call stack. Therefore, we implemented a per-task call history and 
the independent management of the tasks’ respective call stacks. As the task executions are 
handled like functions, and thus the ENTER and LEAVE events of their regions are 
indistinguishable from “regular” function executions, the specific tasking events mentioned 
above as well as knowledge about the expected event order are used to trigger the call-stack 
management. With this knowledge the Scalasca analyzer is able to replay the event streams 
and analyze the trace data. However, due to inherent limitations of its current implementation 
only tied tasks can be supported. The results of the trace analysis follow the presentation style 
of the Score-P profile, using an artificial root node collecting the tasks’ sub-call trees as well as 
stub nodes to represent task executions. 

3.2 Integrated result presentation of hybrid asynchronous applications 

Besides the pure instrumentation, measurement, and analysis capabilities, providing an 
integrated presentation of the analysis results of hybrid asynchronous applications poses its 
own challenges. In this section, we outline the enhancements made to improve the user 
experience in such scenarios. 

3.2.1 Analysis report post-processing 

As outlined in Section 2.2, post-processing of Score-P summary reports as well as Scalasca 
trace analysis reports is an integral part of the Scalasca performance analysis workflow and 

supported by the scalasc a ïexamine  convenience command. Under the hood, this 

command performs a so-called remapping, which describes the process of restructuring and 
recalculating the metric tree of a CUBE4 result file. The objective of this restructuring is to 
increase the specificity of the information provided by the metrics, for example, by breaking the 
generic “Time” metric down into more fine-grained metrics such as “MPI communication time” 
or “OpenMP critical section time”. The remapping process takes the flat metric hierarchy of an 
input CUBE4 result file as produced by either Score-P or Scalasca and calculates such sub-
metrics based on calculation rules defined in an XML specification file. The output of this 
remapping process is again a CUBE4 file. 
 
Although being very similar, the Score-P and Scalasca reports obviously differ in the amount of 
detail they provide (i.e., in the number of included metrics). Thus, different calculation rules 

have to be applied during the remapping process. The scalasca - examine  command 

of the Scalasca toolchain automatically chooses the correct specification file depending on the 
input and transparently executes the remapping process when a report is opened for the first 
time. The post-processed report is then cached in the experiment directory and opened directly 
if the result is examined again. 
 
In the context of this deliverable, the remapping process has been improved in various ways: 

¶ With Score-P supporting more and more parallel programming paradigms, additional 
model-specific sub-hierarchies were added to the remapper calculation specifications. 
In particular, we defined new sub-hierarchies for OmpSs, OpenCL, CUDA, and POSIX 
threads. 

¶ Originally, all model-specific hierarchies were included in the post-processed analysis 
report file and subsequently shown to the user in the Cube browser. To improve the 
user experience, we reworked the remapping process such that only the respective 
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metric hierarchies of the programming models that are actually used by the application 
are calculated and shown. 

¶ We defined an alternative metric hierarchy and implemented a corresponding 
remapper calculation specification (see the example below). 

¶ With increasing numbers of processes and threads, the size of the generated Cube 
files also increases significantly ― and with it the duration of the remapping process. 
However, since the remapping is carried out as part of the interactive result 
presentation, it has to be reasonably fast. As a side effect of reworking the calculation 
specification files, we were able to identify and eliminate a number of inefficiencies 
such as redundant calculations. In addition, several optimizations were applied to the 
remapping calculation routines in the Cube library. These efforts led to a significant 
reduction in both the time and memory required for the post-processing. 

 
Figure 3 shows a comparison of the two alternative “Time” metric hierarchies for an example 
Score-P profile measurement run of the Gromacs simulation code.1 Gromacs is a package for 
molecular dynamics calculations with a primary focus on biochemical molecules like proteins, 
lipids, and nucleic acids. The simulation was configured to use MPI, OpenMP, and CUDA in 
combination. On the left hand side, the original “Time” metric hierarchy including the newly 
defined CUDA sub-hierarchy is shown. It breaks the overall execution time down into 
computation and time spent in activities related to the different programming models in use. 
This model-specific time is then split further into more specific categories (if applicable). The 
screenshot on the right shows the alternative metric hierarchy, which on the top level 
categorizes the execution time into computation and higher-level activities such as 
communication, synchronization, management, etc. The breakdown by programming model 
happens on the following level of the hierarchy. 
 
The advantage of this alternative hierarchy is that it allows for an easier overview and direct 
answers to common questions such as “How much time does my application spend in 
communication or synchronization compared to computation?” even in the presence of multiple 
programming models. Thus, it can be considered to provide a more integrated view on the 
application’s performance behavior. It should be noted that these questions can also be 
answered using the original hierarchy by selecting multiple nodes in the metric hierarchy, 
however, this becomes tedious and error-prone the more programming models are involved. 
 
We are currently in the process of evaluating the pros and cons of both hierarchies in close 
collaboration with a number of application developers, and also plan to present these two 
alternatives at upcoming workshops to get further feedback. Preliminary results indicate that 
both views may be appropriate depending on the user’s specific interest, and thus, a 
convenient way of selecting the preferred view or even interactively switching between them 
may be required. 

                                                 
1 The difference in computation time between the two hierarchies can be explained by the fact that the alternative 
specification does not yet handle CUDA kernel launches (4.05s) and uncategorized CUDA activities (6.19s). Thus, 
this time is still attributed as computation. This limitation will be fixed in the near future. 
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Figure 3: Original ñTimeò metric hierarchy (left) and alternative hierarchy (right) for an example 
profile measurement run of the Gromacs molecular dynamics simulation using MPI, OpenMP, 

and CUDA in combination. 
 

3.2.2 Call tree visualization 

The call tree view of the Cube display represents the call path information aggregated over all 
threads or in more general terms over all locations. In the traditional synchronous execution 
models, the call paths visited by the individual threads share some common parent call path, 
for example, an OpenMP parallel region construct. Thus, the corresponding sub-call trees can 
be presented as children of this parent call path. This also fits with the inclusive/exclusive 
property of the Cube call tree display, that is, a collapsed OpenMP parallel region call path 
node aggregates the inclusive value of the selected metric (e.g., time) across all threads, as the 
threads’ execution is entirely nested within the parallel region. The breakdown for the individual 
threads/locations then happens in the rightmost panel of the Cube display, the system tree. 
 
This conformity of the call paths is lost when threads execute distinctly different call paths. For 
example, a POSIX thread started in one call path on the master thread executes completely 
independently from the master, typically runs longer than the function where the 

pthread_create  call occurred, and can even be joined by another thread at a very 

different call path. This also happens for code run on accelerator locations, which execute their 
kernels while the CPU thread continues its own execution, or for threading locations when 
tasks are used and the worker threads just perform a sequence of task executions. While tasks, 
and to a degree also kernels, can have their own sub-call trees, they usually have relatively flat 
hierarchies since they are typically small execution units to support the automatic load 
balancing approach. 
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With the rising number of asynchronous parallel programming models, we concluded that a 
standardized representation of the asynchronous elements is necessary to direct the user to 
recognizable and recurring elements during the analysis of his hybrid code. Our current 
implementation design therefore introduces artificial top-level call tree nodes named THREADS, 
TASKS, and KERNELS. These nodes do not have a region counterpart in the application code, 
that is, only serve structural purposes by grouping the sub-call trees of the corresponding 
asynchronous constructs, and are always shown at the bottom of the Cube call tree panel. 
Moreover, we intentionally only distinguish between these coarse categories and not individual 
programming models to improve readability. While support for the THREADS and TASKS 
nodes is already available, we are currently finalizing the implementation to introduce the 
KERNELS node. 
 

3.3 Support for additional programming models 

To provide a comprehensive hybrid performance analysis to the application developer, Score-P 
was extended to support instrumentation and measurement of additional programming models 
besides MPI and OpenMP. In particular, support for OmpSs and OpenCL was developed as 
part of the Mont-Blanc project and is detailed in the following two subsections. Finally, the third 
subsection gives an overview of further programming models whose support was developed 
and added to Score-P in the context of other projects. 

3.3.1 OpenCL 

Support for instrumenting and measuring OpenCL applications was developed as part of the 
second phase of the Mont-Blanc project and has been released with Score-P v1.4. The 
instrumentation strategy is twofold. OpenCL API functions are intercepted by library wrapping, 
that is, symbol renaming at application link time. Additionally, kernel executions are buffered by 
the OpenCL runtime and processed by the Score-P measurement system at specific 
synchronization points or at the end of the measurement run, respectively. Aside from the 
kernel information, Score-P is also able to record OpenCL buffer read/writes and the memory 
usage of OpenCL through counting of allocations. Various measurement settings (e.g., the size 
of the event and command queue buffers or which OpenCL functionality to track) can be 
configured through environment variables.  
 
In Figure 4, a screenshot of an example profile run of Gromacs is shown. Here, the simulation 
was configured to use MPI, OpenMP, and OpenCL. As can be seen, the OpenCL activity is 
recorded on a separate location in the system tree, identified by the device name (i.e., “Tesla 
K20Xm”), which is attached to the controlling process.2 The API calls appear at their respective 
positions in the main call tree. The user has to keep in mind that some of these, for example, 
memory transfers, due to their asynchronous nature happen in the background controlled by 
the OpenCL runtime. Therefore, the measured regions represent the scheduling point and 
reflect the respective source code locations. 

                                                 
2 To be precise, each OpenCL command queue created by the application will be represented by a separate 
location in the system tree. 
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Figure 4: Hybrid Gromacs run using MPI, OpenMP and OpenCL. Highlighted are exemplary 
OpenCL API calls executed by the master thread as well as the two OpenCL kernels executed 

on a Tesla K20Xm GPU. 
 

3.3.2 OmpSs 

Instrumentation of OmpSs applications is based on a runtime event system, in contrast to 
library wrapping or source-based instrumentation as used by OPARI2. Therefore, the task of 
supporting such a model consists of interpreting, filtering, and mapping the events generated 
by the runtime system to the semantics of the internally used concepts, e.g., task model, 
threading events, and call path regions. To allow access to the event system, the Nanos++ 
OmpSs runtime provides a plugin interface which enables tool developers to create a plugin to 
interface with their own measurement system. 
 
A prototypical plugin for the Nanos++ OmpSs runtime as well as a corresponding Score-P 
adapter had already been developed during the first phase of the Mont-Blanc project. 
Throughout the second phase, we enhanced this interface in various ways and continuously 
updated the implementation to account for new developments in Nanos++ and Score-P. 
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Figure 5: Score-P and OmpSs runtime component interaction 
 
Figure 5 shows how the OmpSs support based on the OmpSs plugin interface is implemented 
in Score-P. While the OmpSs plugin interface provides direct and detailed information from the 
runtime, it also introduces a strong dependency on the runtime implementation. Therefore, the 
plugin, although its source is packaged with Score-P, is built separately ― if necessary with a 
different compiler. The plugin interacts with the Score-P measurement system through a 
minimal interface connecting to the OmpSs adapter, thus reducing the coupling through an 
additional level of abstraction. In this constellation, the plugin gathers the information of the 
runtime and sends a filtered set of events to the adapter, which maps these events to the 
corresponding Score-P region, threading, and task events. Since the OmpSs runtime is 
focused on tasks, almost all events passed through this interface are either task or basic thread 
information; user function or MPI instrumentation is provided through the respective existing 
Score-P adapters. 
 
As Score-P’s OmpSs adapter maps the events provided by the plugin onto the generic task 
handling functions outlined in Section 3.1, the enhanced Scalasca trace analysis also works on 
OTF2 trace experiments generated from OmpSs applications without further modification, also 
when used in combination with MPI. 
 

 
 

Figure 6: Example of a Scalasca trace analysis of a hybrid MPI+OmpSs n-body solver 
measured the Mont-Blanc prototype cluster. 
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The example in Figure 6 shows the result of a Scalasca trace analysis of an n-body solver. 
Although the program has been taskified and does the bulk of the computation in the task 

function calculate_force_func , the focus of the analysis shown in this screenshot is 

on the MPI waiting times. The post-processed metric tree in the left panel shows the wait-state 
patterns Scalasca identified in this measurement run, while the middle and right panel highlight 
where in call tree and system location these patterns occur. 
 
In parallel to the OmpSs-specific plugin implementation, we participate in the discussions about 
a standardized OpenMP tools interface (OMPT). Details on the OMPT interface specification, 
the current state of the implementation in the Nanos++ runtime, and the prototypical tool 
implementations can be found in deliverable D5.6. When the OMPT interface is ratified and 
able to replace the aforementioned functionality, the necessity to provide an own tool-specific 
runtime plugin ceases to exist, as a standard OMPT plugin would be provided by the OmpSs 
runtime. 

3.3.2.1 OmpSs using OpenCL targets 

Within the Mont-Blanc project, OmpSs is also used in conjunction with OpenCL to leverage the 
computational power of the GPU available on the ARM-based Mont-Blanc cluster prototype. On 
the level of the OmpSs programming model, this results in the use of the target device(opencl) 
clause in the task statement. This clause indicates that the following task should be executed 
on the specified device instead of a CPU thread. However, since all OpenCL API calls are 
hidden inside the OmpSs runtime and are thus outside the area of influence of the user, it is not 
advisable to intercept and present all OpenCL calls using the method described in Section 
3.3.1 to avoid confusion on the user’s side who did not write these OpenCL calls explicitly. 
Instead, the OmpSs runtime creates an additional CPU thread as a stand-in for the GPU target 
location and generates appropriate events to represent the execution of tasks as kernels on the 
GPU. 
 
To create consistent and helpful results with Score-P, the measurement system on the one 
hand has to treat this OmpSs GPU thread internally as an additional CPU thread, and on the 
other hand has to visibly mark it as the GPU representative such that the user can easily 
distinguish between kernel executions on the CPUs and on the GPU.  Otherwise, the event 
stream on the GPU thread is ― from the Score-P perspective ― indistinguishable from any 
other worker thread, showing a sequence of task executions. This also allows for a Scalasca 
trace analysis, which is not yet capable of handling “real” GPU locations. 
 
Figure 7 shows an example profile of an n-body solver test case run on a single ARM node of 
the Mont-Blanc prototype cluster. In this screenshot, the integration of the GPU tasks into the 

Score-P task model can be seen. The GPU kernel calculate_force_kernel  is 

treated in the same way as any other task (middle column), but can still be matched to the GPU 
by using the system tree location as reference (right column). The kernel name itself is chosen 
by the user, so it does not necessarily indicate a GPU kernel. In the metric tree (left column), 
task execution is categorized as computation, while task creation and the taskwait construct 
are considered synchronization and management overhead of the OmpSs programming model. 



D5.8 Integrated Hybrid Scalasca Analysis    
Version 1.0 

 17 

 
 

Figure 7: Example of the OmpSs GPU thread integration into the Score-P task model. 
 

3.3.3 Programming model support developed outside of Mont-Blanc 

3.3.3.1 MPI 

Support for MPI 2.2 was already part of the initial Score-P design and is available since the first 
release. Instrumentation is done by providing a pre-instrumented library which leverages the 
standard PMPI profiling interface. Support for the latest MPI 3.1 standard version is currently 
under development. 

3.3.3.2 OpenMP 

Likewise, support for OpenMP 3.0 was a core functional requirement for the initial Score-P 
release. The primary way for instrumenting OpenMP constructs is via the OPARI2 source-to-
source pre-processor. With respect to tasks, Score-P initially only supported tied tasks, 
however, as outlined in Section 3.1.1, support for untied task (i.e., task migration) has 
subsequently been added and was released with Score-P v1.4. 

3.3.3.3 CUDA 

CUDA instrumentation and measurement in Score-P follows a similar strategy as the OpenCL 
support described in Section 3.3.1. The CUPTI interface of CUDA provides the buffered device 
activity and these events are post-processed by the Score-P measurement system either at 
specific synchronization points or at the end of measurement. A major difference, however, is 
the way in which API functions are recorded, as CUPTI allows access to host-side runtime and 
driver events through call-back functions. Through a set of environment variables similar to the 
ones provided by the OpenCL support, the user can control the level of detail for the CUDA 
measurements, including a varying number of host-side call-backs as well as memory usage 
information. CUDA support was developed as part of the EU ITEA2 project H4H and released 
with Score-P v1.1. 
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3.3.3.4 SHMEM 

As alternative inter-node paradigm to MPI, support for SHMEM was added with Score-P v1.3. It 
allows the instrumentation of SHMEM library calls for one-sided communication by library 
wrapping at link time. Currently, the implementation is known to work with the OpenSHMEM 
reference implementation, the Open MPI implementation, SGI SHMEM, and Cray SHMEM. 

3.3.3.5 POSIX threads 

Basic support for POSIX threads (Pthreads) instrumentation and measurement was developed 
in the context of the RAPID project [5] and introduced with Score-P v1.3. At present, Score-P 
only tracks the most important Pthreads routines, that is, functions that are responsible for 
creating, joining, synchronizing, and terminating POSIX threads. These routines are intercepted 
using symbol renaming at application link time. In addition to the instrumentation and 
measurement capabilities in Score-P, basic Pthreads support was also added to the Scalasca 
trace analyzer and released in version 2.2. In particular, the analyzer was extended to detect 
and quantify lock contention overheads – a new analysis that due to the generic event model 
used by OTF2 also works for OpenMP locks. 
 

 
 

Figure 8: Example profile of the PEPC tree code for solving n-body problems  
(32 MPI ranks with 14 POSIX threads per rank on JUROPA). 

 
Figure 8 shows a profile of PEPC [7] configured to use 32 MPI ranks with 14 simultaneous 
POSIX threads each. PEPC is a tree code for solving n-body problems and one of the Mont-
Blanc applications. The most challenging component of PEPC in terms of scalability is the tree 
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traversal routine, which in this particular implementation was parallelized using a combination 
of MPI and Pthreads. In each iteration step, a group of Pthreads is created, one thread for 
communication and 13 threads for calculations. Each thread invokes the thread_helper routine, 
shown in a separate subtree under the artificial THREADS node in the call tree view (middle 
column). The run_communication_loop routine is called only by the communication thread, 
whereas all other threads call walk_worker_thread. As soon as all threads invoked the 
thread_helper routine, the main application thread waits for the termination of all child threads 
before proceeding to the next iteration. The system tree view (right column) displays all 
individual threads created throughout the execution. Since PEPC is an iterative solver, their 
overall number can be quite substantial. To address this issue, Score-P provides an 
experimental feature to reuse Pthreads locations, which can be enabled by setting a 
corresponding environment variable (i.e., SCOREP_PTHREAD_EXPERIMENTAL_REUSE).  

3.3.3.6 Other create/wait threading models 

Also in the context of the RAPID project, support for further create/wait threading models (i.e., 
Windows threads, Qt threads, and ACE threads) was integrated into Score-P. While Qt and 
ACE threads use either POSIX or Windows threads underneath, the goal in this project was to 
present the threading calls on the level of abstraction actually used by the application 
developer. To intercept the threading routines, the dynamic binary instrumentation tool Intel Pin 
[8] was used. Score-P and Intel Pin were coupled in order to produce profiles and traces 
compatible with Score-P, Cube, and Vampir. Results of this project are available to the project 
partners in a development branch of Score-P. 

3.3.3.7 EMB2 / MTAPI 

Likewise, prototypical support for EMB2 [6], a particular implementation of the Multicore Task 
Management API (MTAPI), was developed in the context of the RAPID project. Similar to other 
programming models, instrumentation is again based on symbol renaming at link time. This 
implementation is currently available in a Score-P development branch to the project partners. 

 Conclusion and future work 4

In this deliverable, we have detailed our modifications and enhancements to the Score-P 
instrumentation and measurement infrastructure as well as the Scalasca Tracing Tools 
package implemented within the Mont-Blanc project towards an integrated analysis of hybrid 
applications using multiple parallel programming models in combination. In particular, we 
focused on the support for the OmpSs and OpenCL programming models as well as the 
challenges introduced by the asynchronous nature of create/wait-type threading and task-
based programming. Various examples show that Score-P and Scalasca effectively support the 
performance analysis of hybrid codes using a single, coherent workflow and a unified result 
presentation. 
 
Obviously, supporting many different and evolving programming models is an ongoing effort. 
Therefore, we will update and enhance both Score-P and Scalasca to support functionality 
added with new revisions of the programming model specifications. A particular focus will be on 
supporting the final OMPT specification, including accelerator support via the target directive. In 
addition, we will continue to evaluate the result visualization alternatives in the Cube browser in 
close collaboration with application developers. 
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Acronyms and Abbreviations 

- ACE Adaptive Communication Environment; Object-oriented network programming toolkit 
- API  Application Programming Interface 
- CUDA Compute Unified Device Architecture; API to for GPGPU programming (NVIDIA) 

CUPTI CUDA profiling tools interface (NVIDIA) 
- MPI Message passing interface standard (MPI Forum) 
- MTAPI Multicore Task Management API (Multicore Association) 
- Nanos++ Task-oriented runtime system of BSC (used for OmpSs) 
- OPARI2 Source-to-source preprocessor for OpenMP pragma and region instrumentation 

(JUELICH and others) 
- OpenCL Open Computing Language; Industry standard for parallel programming of 

heterogeneous architectures (Khronos Group) 
- OpenMP Industry standard for pragma-based parallel programming paradigm for shared 

memory computers (OpenMP ARB) 
- OmpSs OpenMP extension (including task dependences and accelerator support) of BSC 
- OMPT Draft standard OpenMP performance Tools interface (OpenMP ARB) 
- POSIX Portable Operationg System Interface (IEEE) 
- Scalasca Parallel trace-based performance analyzer of JUELICH 
- Score-P  Parallel program instrumentation and measurement package of JUELICH, TU 

Dresden and other partners 
- SHMEM Symmetric Hierarchical Memory access; family of parallel programming libraries, 

providing remote memory access via one-sided communications. 
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